International trends in urban mobility pricing

Smarter urban mobility pricing: Brussels SmartMove

Webinar organised by the International Road Federation

28th September 2022

PTOLEMUS intellectual property

The first strategy consulting & research firm entirely focused on geo-connected mobility & automation

Strategy consulting services

Market research services

Fields of expertise

Mobility services	Car pooling Car sharing MAAS	Micro-mobility Ride hailing Shared mobility	Smart parking Tax refund
Vehicle services	bCall eCall Fleet telematics SVT / SVR	Tracking VRM In-car Wi-Fi Parking	Navigation Speed cameras Traffic information
Energy transition	BEV EV charging Fuel cards	Fleet electrification Hydrogen	Low Emission Zones Vehicle-to-grid
Usage-based charging	Car As A Service Congestion charging Electronic Toll Collection	Mobility-as-a-Service Road user charging UBI / PAYD	Vehicle rental Vehicle leasing
Vehicle data & analytics	AI CAN-bus Crowd-sourcing	Data protection Driving behaviour OBD	Predictive analytics Remote diagnostics xFCD
Vehicle automation	ADAS Autonomous cars	Autonomous trucks Robo-taxis	Shuttles
Enabling technologies	Positioning (GNSS / WiFi / cellular) M2M / connectivity	Smartphones Sensors Telematics devices	V2X DSRC / RFID ANPR

A member of the IRF, PTOLEMUS has advised many organisations on tolling and road user charging

ROAD OPERATORS / CONCESSIONNAIRES

legis

TOLL ISSUERS & SERVICE PROVIDERS

GOVERNMENTS, AGENCIES & TRADE BODIES

TOLL SYSTEM & DEVICE SUPPLIERS

OTHER STAKEHOLDERS

INVESTORS

BainCapital

PTÓLEMUS

Trends in urban mobility pricing - Objectives & challenges

Congestion pricing tackles all objectives, but is more challenging to implement

Urban mobility taxation options

Implementation challenges

High

n-street oarking ayment	Urban toll	License plate restrictions	Low emission zone	Congestion charge
3 4 5	1	2 3 5	2 3 5	12345
nsterdam arcelona Paris	Dublin Oslo San Francisco	Bogota Manila Mexico City	Brussels London Paris	London Milan Stockholm

Trends in urban mobility pricing - History

Urban mobility pricing started in Singapore and has since been implemented in several European cities

A brief history of congestion charging schemes - Launch date by city

PTÓLEMUS 5

Trends in urban mobility pricing - Technology

ANPR is the most widely used solution today while smartphones and in-vehicle systems are emerging

Traditional technologies

Deployment cost in cities

ANPR = Automatic Number-Plate Recognition; **RFID** = Radio Frequency Identification; **DSRC** = Dedicated Short Range Communication; **GNSS** = Global Navigation Satellite System Source: PTOLEMUS

Emerging technologies

Deployment cost in cities

London, Stockholm and Milan congestion pricing schemes have had impressive results

Stockholm

Congestion reduction has been in line with traffic reduction

2012 **38%** 2014 **37%**

28% reduction in average traffic congestion until 2014

Note: NOx = Nitrogen Oxydes; PM10 = Particulate matter of diameter 10 micrometers or smaller * Costs for operating the system Source: Urban road pricing: a comparative study on the experiences of London, Stockholm and Milan, Edoardo Croci; Long-Term Effects of the Swedish Congestion Charges, OECD

Pollution	Modal shift	System costs*
-13% NOx	Ca. 44% decrease of	39% of revenues in
-15% PM10	number of people entering London by	2008 (65% in 2004)
-16% CO2 emissions	cars (2015 vs 2002)	(00/011/2004)
-13% PM10	99% of commuters	11% of revenues in
-13% CO2 emissions	switched to public transport	2015 (31% in 2008)
-18% NOx	About 12.5% increase	65% of revenues in
-18% PM10	of passengers exiting subway stations inside	2014 (46% in 2009)
-35% CO2 emissions	the area	

A new wave of congestion pricing schemes is coming

Envisaged model

Political context

Recent and future developments

New York City

Fixed toll rate charged to drivers entering the 10 km ² area south of 60 th St. in Manhattan CBD Seven scenarios proposed (\$5 - \$23/entry) Exemption for residents living in Manhattan CBD earning less than \$60,000	F i ar 9 5
Light vehicles toll capped at once per day Trucks toll capped at twice per day	
The project, proposed by the City and the State has the support of the Biden's administration and several city organisations	T s
Opposition comes from representatives of the state of New Jersey and is expected from some non-exempted drivers in NYC	

The environmental assessment (EA) has been published in August, and recommends the application of toll fees of **\$6.5 to \$13**

Next is validation of public comments, and the Federal Highway Administration decision in January 2023

A feasibility study was conducted in 2019 and a pilot programme is expected to be launched by 2025

Los Angeles

ixed toll rate (\$4) charged to drivers ntering a 11 km² area of West Los Angeles nd Santa Monica

0% discounts for residents

0% discount for low-income drivers

Per kilometre toll rate charged to drivers within the whole Brussels metropolitan region

Toll rate is a sum of a flat rate of €1-2 and a variable rate of 8 - 20 cents/km

Heavy vehicles would be exempted, but still subject to Viapass

here are **supporters and detractors** of the cheme among the city council members

Strong opposition from parliaments of the Flanders and Wallonia neighbouring regions

A SmartMove pilot was launched in August, and a second and bigger phase of the pilot should start soon

Several measures should ideally be combined and communicated to foster public acceptance

1. Prioritise congestion reduction over revenue gene

Indicators that raising funds for the city is the scheme's prima objective trigger more opposition in the mind of the public

2. Engage an informed public discussion

Alleviate public concerns such as privacy fears, tax fatigue, et communicate about the health benefits, reduction of number accidents, increased funds for public transportation, etc.

3. Conduct a trial

Easily implemented when infrastructure is already in place, su in the case of a congestion pricing zone overlapping a LEZ

4. Develop alternative modes

Offer more and better alternatives to car trips, such as car sha new public transport lines, parking facilities outside the zone

5. Handle edge cases proactively

Specific social categories and specific trips can be offered a preferred treatment including **discounts** or **HOV lanes**

Source: PTOLEMUS

eration	Impact on public acceptance		
ry	Medium		
tc. and r of	High		
such as	Medium		
aring, e, etc.	High		
	High		

PTÓLEMUS 9

Trends in urban mobility pricing - Privacy

Various alternatives are available to cities to alleviate potential user privacy concerns

Solutions for users privacy management

Best practices from Singapore

Emerging solution

Prepaid cashcard

Insertion of a prepaid cashcard into the invehicle unit to avoid retention of vehicle identification data

Aggregated data collection & use

Commitment to use traffic location data only in an aggregated format

Temporary data storage

Retention of number plate identification of offending vehicles no further than the offence is dealt with

Cryptography

Encryption of user's identity to allow anonymous and unlinkable interaction between the car and the toll system

PTÓLEMUS¹⁰

Trends in urban mobility pricing - Pricing vs ban

Mobility pricing schemes are much smarter than vehicle bans but also require significant evangelisation

Mobility pricing

- \star Offers options to drivers
- 🛧 Raises funds for cities
- ★ Encourages modal shift
- ★ Can be made distance-based
- \star Application area can vary overnight with a GNSS system
- Detrimental effect on rural populations
- Could be seen as "unfair" by poor citizens

Vehicle interdiction

- + Best for the environment
- ★ Encourages modal shift
- Detrimental effect on rural populations
- Detrimental to city finances
- * Car use completely impossible including for taxis and restricted mobility persons (sick, old and handicapped inhabitants)
- * Generates driver's frustration

Ways to reduce the weaknesses of mobility pricing

Emphasise expected benefits and **measure them** during the trial period

Effectively handle edge cases e.g. using targeted exemptions (commercial vehicles, ambulance & firemen, poor inhabitants, etc.)

VS

Improve **public transportation and overall mobility offer** (e.g. with MaaS)

Trends in urban mobility pricing - Smarter mobility pricing

In a high inflation era, new mobility pricing schemes can reduce the acceptance challenge

New mobility pricing schemes can be much smarter

- Flat tariffs can be replaced with **distance-based rates**, using GNSS
- Charging can vary, based on time and area, combining mobility pricing with advanced traffic management
- ANPR cameras can then be restricted to enforcement, reducing costs
- Apps can bring easy account reload and MaaS integration, which improve citizen's mobility experience

Applicability and tariffs can be flexed depending on local priorities:

- Target area can be extended over time
- Certain vehicle categories can be exempted (taxis, buses, ambulance, firemen, etc.)
- Preferential tariffs can be applied to **Zero Emission Vehicles**
- Certain **population categories** can be exempted

PTÓLEMUS¹²

The success of the new mobility pricing wave will be built on a step-by-step approach and a strong support policy

Public acceptance is the biggest challenge thus objectives should be made clear and actions aligned with them

- Traffic reduction or
- Pollution reduction or
- Fund raising

Implementation should be made step-by-step

- Starting with a trial with measured KPIs
- **Broadening the applicability** gradually (area, population, time, etc.)
- **Exempting** certain categories of the vehicles and the population

A strong support policy should be implemented

- An easier mobility experience must be offered including with a MaaS application, P+R parkings, improved public transport, etc.
- A communication policy detailing the target benefits to be achieved
- A solid enforcement policy based on a strong legal environment

PTÓLEMUS¹³

PTÓLEMUS Consulting Group

Strategies for Mobile Companies

contact@ptolemus.com www.ptolemus.com @PTOLEMUS

Frederic Bruneteau Managing Director fbruneteau@ptolemus.com +32 487 96 19 02

